

Synthesis of poly(3-hydroxyalkanoate)s by ring-opening copolymerization of (R)- β -butyrolactone with other four-membered lactones using a distannoxane complex as a catalyst

Tohru Kobayashi, Akio Yamaguchi, Toshimitsu Hagiwara and Yoji Hori* Central Research Laboratory, Takasago International Corporation, 1-4-11 Nishi-Yawata, Hiratsuka, Kanagawa 254, Japan (Received 10 April 1995; revised 22 May 1995)

The reaction of optically active β -butyrolactone with other four-membered lactones in the presence of 1-ethoxy-3-chlorotetrabutyldistannoxane as a catalyst at 100°C gave a series of poly(3-hydroxyalkanoate)s with high molecular weight in good yields.

(Keywords: distannoxane; ring-opening copolymerization; poly(3-hydroxyalkanoate)s)

Introduction

A wide variety of microorganisms produce polv(R)-3hydroxybutyrate] [P(3HB)] as an intracellular storage material¹. P(3HB) is a thermoplastic which is degradable in the environment by either hydrolytic or enzymatic degradation processes²⁻⁵. However, there are several drawbacks to the use of P(3HB), mainly based on its tendency to be rather brittle. This problem could be solved by the synthesis of copolymers of 3-hydroxybutyrate and other hydroxyalkanoates. Several authors have described the synthesis of 3HB copolymers by biochemical methods⁶⁻¹¹, whereas the bacterial synthesis of P(3HB) analogues is limited to only a few copolyesters.

Recently, much attention has been paid to the synthesis of P(3HB) by the ring-opening polymerization

$$H_3C_{N_n}$$
 $+$ $H_3C_{N_n}$ $+$ H_3C

1b; $R_1 = R_2 = R_3 = H$ (PL)

c; $R_1 = CH_3$, $R_2 = R_3 = H$ (α -MePL)

d; $R_1 = CH_3$, $R_2 = H$, $R_3 = CH_3$ (a, β -diMePL, erythro/threo = 9/1)

e; $R_1 = R_2 = CH_3$, $R_3 = H (\alpha, \alpha - diMePL)$

f; $R_1 = R_2 = H$, $R_3 = CH_2CH_3$ ((*R*)- β -VL)

Scheme 1

of β -butyrolactone $(\beta$ -BL)¹²⁻¹⁴, and this reaction can also be used to prepare 3HB copolymers that are not available from the biosynthetic route. We have already reported new biodegradable copolyesters synthesized by the ring-opening copolymerization of (R)- β -BL with sixor seven-membered lactones using distannoxane complexes as a catalyst 15,16. Here, we report on the ring-opening copolymerization of (R)- β -BL (Scheme 1, 1a) with other four-membered lactones (Scheme 1, 1b-1f) using distannoxane complex (Scheme 1, 2) and the biodegradation of the resulting polyesters (*Scheme 1*, 3) in activated sludge.

Experimental

Materials. (R)- β -BL (Scheme 1, 1a, 92% ee) was prepared by the Ru-(S)-BINAP-catalysed asymmetric hydrogenation of diketene¹⁷ (BINAP = 2, 2'-bis(diphenylphosphino)-1,1'-binaphthyl). α -Methyl- β -propiolactone¹⁸ (Scheme 1, 1c, α -MePL) was prepared from 3-bromoisobutyric acid trimethylsilyl ester according to the procedure described in the literature 19 . α, β -Dimethyl- β propiolactone²⁰ (1d, α , β -diMePL, erythro/threo = 9/1) and α , α -dimethyl- β -propiolactone²¹ (Scheme 1, 1e, α , α diMePL) were synthesized by the lactonization of 3-bromo-2-methylbutyric acid and 3-chloropivalic acid, respectively, using sodium carbonate²². (R)- β -Valerolactone (Scheme 1, 1f, (R)- β -VL) was synthesized from methyl (S)-3-hydroxyvalerate²³, which was prepared by the Ru-(S)-BINAPcatalysed asymmetric hydrogenation of methyl propionylacetate. (The enantiomeric excess of methyl (S)-3-hydroxyvalerate was 99.1%, obtained by the h.p.l.c. analysis of its (R)-MTPA esters.) This was done in four steps, as shown in Scheme 2, by the same procedure employed by Lenz et al. 12 for the synthesis of optically active β -BL. The enantiomeric excess of 1f was 98.7%, as determined by the h.p.l.c. analysis of (R)-MTPA ester of methyl (R)-3hydroxyvalerate derived from 1f (MTPA = α -methoxy- α -trifluoromethylphenylacetyl). If was converted into methyl (R)-3-hydroxyvalerate by methanol and potassium hydroxide. Propiolactone (Scheme 1, 1b) was purchased from Tokyo Kasei Co. All the lactones were dried by

^{*}To whom correspondence should be addressed

Scheme 2

CaH₂ and distilled under reduced pressure. Biologically synthesized poly(3-hydroxybutyrate-co-11% 3-hydroxyvalerate) [P(3HB-co-11%3HV)] was purchased from Aldrich Chemical Co. Distannoxane 2 was prepared by the procedure described in the literature²⁴ and dried in vacuo at 80°C for 20 h.

Measurement. I.r. spectra were recorded on a JASCO IR-810 spectrophotometer. ¹H n.m.r. spectra were measured on a Bruker AMX 400 spectrometer using tetramethylsilane as the internal standard. Optical rotation measurements were performed on a JASCO DIP-360 spectrometer. Differential scanning calorimetry (d.s.c.) was performed with Shimadzu thermal analysers DSC-50, and measurements were made at heating and cooling rates of 10°C min⁻¹ under nitrogen. The melting temperature (T_m) was taken as the peak temperature of the melting endotherm (first run). The glass transition temperature (T_g) was taken as the inflection point of the specific heat increment at the glass transition (second run). Weight-average molecular weight (M_w) and numberaverage molecular weight (M_n) were obtained by gel permeation chromatography (g.p.c) with polystyrene calibration, using chloroform as an eluent.

Ring-opening copolymerization. The reaction of (R)- β -BL (1a) and (R)- β -VL (1f) is a representative example.

1a (2.75 g, 32.0 mmol), 1f (0.80 g, 8.0 mmol), and 1ethoxy-3-chlorotetrabutyldistannoxane (2, 11.2 mg, 10 μmol) were heated in a 20 ml Schlenk tube at 100°C for 5h. The resulting mixture was dissolved in chloroform, and the solution was then added to a mixture of diethyl ether and hexane to afford the white solid of the polyester 3k (3.05 g) in 87% yield. I.r. ν (film, cm⁻¹): 2980, 2940, 2880, 1740 (C=O), 1455, 1380, 1280, 1185, 1130, 1100, 1060 and 980. ¹H n.m.r. (in CDCl₃): $\delta = 0.90$ (t, J = 7.4 Hz, CH₃ for 3HV unit), 1.28 (d, $J = 6.8 \,\mathrm{Hz}$, CH₃ for 3HB unit), 1.65 (m, CH₂ for 3HV unit), 2.40-2.69 (m, CH₂ for 3HB and 3HV units), 5.15 (m, CH for 3HV unit) and 5.25 (m, CH for 3HB unit).

Representative ¹H n.m.r. data (3a, 3c, 3d and 3g) measured in CDCl₃ are as follows. **3a**: $\delta = 1.22-1.33$ (m, CH₃ for 3HB unit), 2.42–2.56 (m, CH₂ for 3HB unit), 2.56-2.70 (m, CH₂ for 3HB and 3HP units), 4.28-4.38 (m, CH₂ for 3HP unit) and 5.20-5.35 (m, CH for 3HB unit). 3c: $\delta = 1.18$ (d, J = 6.3 Hz, CH₃ for 2-Me-3HP unit), 1.21-1.34 (m, CH₃ for 3HB unit), 2.42-2.52 (m, CH₂ for 3HB unit), 2.55–2.67 (m, CH₂ for 3HB unit), 2.69-2.80 (m, CH for 2-Me-3HP unit), 4.10-4.27 (m, CH₂ for 2-Me-3HP unit) and 5.19-5.31 (m, CH for 3HB unit). **3d**: $\delta = 1.10-1.16$ (m, CH₃ for 2,3-diMe-3HP unit), 1.16-1.23 (m, CH₃ for 2,3-diMe-3HP unit), 1.23-1.33 (m, CH₃ for 3HB unit), 2.40-2.52 (m, CH₂ for 3HB unit), 2.55-2.67 (m, CH₂ for 3HB and 2,3-diMe-3HP units), 5.06-5.17 (m, CH for 2,3-diMe-3HP unit) and 5.18–5.31 (m, CH for 3HB unit). **3g**: $\delta = 1.19$ (s, CH₃ for 2,2-diMe-3HP unit), 1.21-1.32 (m, CH₃ for 3HB unit), 2.41-2.52 (m, CH₂ for 3HB unit), 2.56-2.68 (m, CH₂ for 3HB unit), 4.03-4.17 (m, CH₂ for 2,2-diMe-3HP unit) and 5.20-5.31 (m, CH for 3HB unit).

Biodegradation test. Biodegradation polyester films were carried out at 25°C in 500 ppm of activated sludge. The test was conducted in accordance with OECD Test Guideline No. 302 and modified in accordance with the method described in the literature²⁵. The standard activated sludge was purchased from the

Table 1 Polymerization results of (R)- β -BL with 1b-1f at 100 C^u

Entry	Monomer (feed ratio)	Polymer (obsd ratio) ^h	mer c'	Mol. wt ^d					
			T _m (°C)	(C)	$M_{ m w}$	$M_{\rm n}$	Yield (%)	$[lpha]_{ extbf{d}}^{ ext{rt}}$ (degree)	
l^f	1a	P(3HB) ²⁸	163	5.3	424 000	178 000	99	-1.6	
2	1a/1b (90/10)	3a (90/10)	135	- 3.1	96 000	54 000	99	-1.1	
3	1a/1b (60/40)	3b (59/41)	93	-11.7	60 000	36 000	89	-0.3	
4	1a/1c (95/5)	3c (95/5)	143	3.3	118 000	80 000	85	-1.5	
5	1a/1d (95/5)	3d (95/5)	139	4.0	112 000	67 000	90	-1.7	
6	1a/1d (90/10)	3e (92/8)	121	5.6	111 000	67 000	81	-2.2	
7	1a/1d (80/20)	3f (83/17)	82	6.2	103 000	63 000	78	-3.0	
8	la/le (95/5)	3g (96/4)	142	4	122 000	83 000	94	-1.6	
9	1a/1e (90/10)	3h (91/9)	124	5.1	103 000	63 000	90	-2.1	
10	1a/1e (80/20)	3i (82/18)	83	= 1.1	105 000	63 000	93	-2.8	
11"	1a/1f (90/10)	3i (91/9)	124	1.4	198 000	130 000	95	-0.7	
12^{h}	1a/1f(80/20)	3k (83/17)	100	0.1	160 000	107 000	87	1.3	
13	1a/1f(60/40)	31 (58/42)	62	-6.6	66 000	39 000	84	4.6	

^a Polymerization conditions: lactone = 40 mmol, lactone/catalyst = 2000, no solvent was used

^b Determined by ¹H n.m.r. analysis

^c Measured by d.s.c in nitrogen at a heating rate of 10 C min⁻¹

^d Determined by g.p.c. analysis, calibrated to a polystyrene standard

Measured in chloroform

Lactone/catalyst = 8000

Not observed

h Lactone/catalyst = 4000

Chemicals Inspection and Testing Institute, Japan. Polyester films (initial weights, 16.0-42.7 mg; initial film dimensions, $10 \times 10 \,\mathrm{mm}^2$ and $0.13-0.41 \,\mathrm{mm}$ thick) were placed in 100 ml bottles. The reaction was started by the addition of 50 ml of an aqueous solution of the activated sludge and then was incubated at 25 ± 0.1 °C with shaking for 4 weeks. Samples were removed once a week, washed with water, and dried to constant weight in vacuo.

Results and discussion

Table 1 summarizes the results of ring-opening copolymerization using catalytic distannoxane complex 2. All the polyesters were obtained with good to excellent yield and with high molecular weight by g.p.c. analyses. ¹H n.m.r. studies revealed that the ratios of 3HB units in the polyesters were almost the same as those of the (R)- β -BL feed ratios. The T_g values of the polyesters 3a-3c and

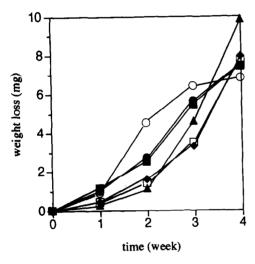


Figure 1 Biodegradation profiles of solution-cast films of polyesters 3a, 3c, 3e, 3f, 3h and bacterial P(3HB-co-11%3HV) samples in aqueous solutions of standard activated sludge at 25°C: (■) 3a; (●) 3c; (▲) 3e; (♠) 3f; (□) 3h; (○) bacterial P(3HB-co-11%3HV)

Figure 2 Biodegradation profiles of solution-cast films of polyesters 3j-3l, and bacterial P(3HB-co-11%3HV) samples in aqueous solutions of standard activated sludge at 25°C: (●) 3j; (▲) 3k; (◆) 3l; (■) bacterial P(3HB-co-11%3HV)

3h-3l obtained by d.s.c. measurement decreased as the 3HB contents decreased. It seems that the content of the 2,3-dimethyl-3-hydroxypropionate unit does not affect the T_g values of the polymers (3d-3f). The peak melting temperature $(T_{\rm m})$ of all the polyesters also observed by d.s.c. decreased with decreasing 3HB fraction from 163°C. This fact indicates that the other 3-hydroxyalkanoate units in the 3HB repeating sequence in the main chain decrease the crystallinity of the P(3HB) crystalline structure. Poly(3-hydroxybutyrate-co-3-hydroxypropionate) $[P(3HB)-co-3HP)]^{26}$ and $P(3HB-co-3HV)^{27}$ have already been synthesized biologically. The melting points of 3a-3c and 3j-3l are lower than those of the corresponding bacterial PHAs, probably because the enantiomeric excess of (R)- β -BL (1a) used in this study was 92%. We have already reported that the bond between the carbonyl carbon and oxgen atom of (R)- β -BL was cleaved by the distannoxane complex with retention of the configuration to yield P(3HB)²⁸. It is also considered that the copolymerization of (R)- β -BL with other four-membered lactones proceeds by acyl cleavage with retention of the configuration.

The biodegradability of the polyester films was studied at 25°C in aqueous solutions of a standard activated sludge. Figures 1 and 2 show the weight loss profiles of the polyesters 3a, 3c, 3e, 3f, 3h and polyesters 3j-3l, respectively, as a function of degradation time. The polyesters 3a, 3c, 3e, 3f, 3h and 3k are almost as biodegradable as bacterial P(3HB-co-11%3HV) in 4 weeks (Figure 1), whereas the erosion rates of the polyesters 3k and 3l with 17% and 42% 3HV units, respectively, were slower than bacterial P(3HB-co-11%3HV) in the activated sludge (Figure 2).

In conclusion, new and known poly(3-hydroxyalkanoate)s were successfully synthesized by the ringopening polymerization of (R)- β -BL with other fourmembered lactones in the presence of 1-ethoxy-3chlorotetrabutyldistannoxane as a catalyst at 100°C. These polyesters showed biodegradability in a standard activated sludge at 25°C.

References

- Dawes, E. A. and Senior, P. J. Adv. Microb. Physiol. 1973, 10,
- 2 Holland, S. J., Jolly, A. M., Yashin, M. and Tighe, B. J. J. Biomaterials 1987, 8, 289
- 3 Doi, Y., Kanesawa, Y., Kunioka, M. and Saito, T. Macromolecules 1990, 23, 26
- 4 Fukui, T., Narikawa, T., Miwa, K., Shirakura, Y., Saito, T. and Tomita, K. Biochim. Biophys. Acta. 1988, 952, 164
- 5 Saito, T., Suzuki, K., Yamamoto, J., Fukui, T., Miwa, K., Tomita, K., Nakanishi, S., Odani, S., Suzuki, J. and Ishikawa, K. J. Bacteriol. 1989, 171, 184
- Holmes, P. A. Phys. Technol. 1985, 16, 32
- Haywood, G. W., Anderson, J. A., Chu, L. and Dawes, E. A. Biochem. Soc. Trans. 1988, 16, 1046
- Ramsay, B. A., Ramsay, J. A. and Cooper, D. G. Appl. Environ. Microbiol. 1989, 55, 584
- Q Brandl, H., Gross, R. A., Knee, Jr, E. J., Lenz, R. W. and Fuller, R. C. Int. J. Biol. Macromol. 1989, 11, 49
- Findlay, R. H. and White, D. C. Appl. Environ. Microbiol. 1983, 10
- Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., 11 Eggink, G. and Witholt, B. Appl. Environ. Microbiol. 1988, 54, 2924
- 12 Zhang, Y., Gross, R. A. and Lenz, R. W. Macromolecules 1990,
- Kemnitzer, J. K., McCarthy, S. P. and Gross, R. A. Macromolecules 1992, 25, 5927

Synthesis of poly(3-hydroxyalkanoate)s: T. Kobayashi et al.

- 14 Kemnitzer, J. K., McCarthy, S. P. and Gross, R. A. Macromolecules 1993, 26, 6143
- Hori, Y., Takahashi, Y., Yamaguchi, A. and Nishishita, T. *Macromolecules* 1993, **26**, 4388 15
- Hori, Y. and Yamaguchi, A. Macromolecules 1995, 28, 406 16
- 17 Ohta, T., Miyake, T. and Takaya, H. J. Chem. Soc. Chem. Commun. 1992, 1725
- 18 Stuckwisch, C. G. and Bailey, J. V. J. Org. Chem. 1963, 28,
- 19 Birkofer, L., Ritter, A. and Schramm, J. Chem. Ber. 1962, 95, 426
- 20
- Dervan, P. B. and Jones, C. R. J. Org. Chem. 1979, 44, 2116 Yamashita, Y., Ishikawa, Y. and Tsuda, T. Kogyo Kagaku 21 Zasshi 1964, 67, 252
- 22 Bloembergen, S., Holden, D. A., Bluhm, T. L., Hamer, G. K. and Marchessault, R. H. Macromolecules 1989, 22, 1656
- Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayao, N., Kumobayashi, H. and Akutagawa, S. J. Am. Chem. Soc. 1987, 23 109, 5856
- Okawara, R. and Wada, M. J. Organomet. Chem. 1963, 1, 81
- 25 Doi, Y., Segawa, A. and Kunioka, M. Int. J. Biol. Macromol. 1990, **12**, 106
- 26 Nakamura, S., Kunioka, M. and Doi, Y. Macromolecular Reports 1991, A28, 15
- 27 Kunioka, M., Tamaki, A. and Doi, Y. Macromolecules 1989, 22,
- 28 Hori, Y., Suzuki, M., Yamaguchi, A. and Nishishita, T. Macromolecules 1993, 26, 5533